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Introduction

According to the Bishop-Hill rate-insensitive model (1–3) for the plastic deformation of polycrystals (in
casu fcc polycrystals) there are, in a grain of a given orientation, 6 or 8 potentially active {111}^110&
slip systems with a resolved shear stress equal to the critical resolved shear stress. Out of these, at least
5 are active according to Taylor (4) (in reality the Taylor model is identical to the Bishop-Hill model
with some additional rule to select the active slip systems (5)—to solve the “Taylor ambiguity”). For
the 6 or 4 slip systems which are not potentially active Bishop and Hill only state that the resolved shear
stress is lower than the critical resolved shear stress. In the present work we shall show that it is actually
zero, and we shall discuss certain implications.

Model Observations

The original observations of the zero value of the resolved shear stress on the non potentially active slip
systems in fcc polycrystals were made for self-consistent models of the Kro¨ner (6) and Hutchinson (7)
type (the Kröner-type model is described in (8) and the Hutchinson-type model is described in (9)). In
Kröner’s model all grains reach vertex stresses on the yield surface, in Hutchinson’s model only
relatively few grains reach vertex stresses. In both models the computer printed out the 12 resolved
shear stresses in each grain, and it turned out that whenever vertex stresses were reached, there were
6 or 8 slip systems with resolved shear stresses practically equal to the critical shear stress and 6 or 4
slip systems with resolved shear stress practically equal to zero. Whenpractically must be added, it is
due to the structures of the two computer programs (not to be described here) which lead to finite
deviations from the exact vertex stresses.

Inspired by these “empirical” observations we provide, in the next section, a strict mathematical
proof of the zero value of the resolved shear stresses on the slip system which are not potentially active.
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Analysis

Bishop and Hill (1,2) have constructed the yield locus of an fcc single crystal. In the five-dimensional
deviatoric stress space (as11 1 s22 1 s33 5 0 section of the six-dimensional stress space) it looks like
a polyhedron with many facets. It has 56 vertices. The corresponding deviatoric stresses are called
vertex stresses. Hill’s Maximum Work Principle for rate-insensitive plasticity was then used to
demonstrate that the stress which corresponds to a prescribed plastic strain vector will nearly always be
a vertex stress, except when the prescribed plastic strain happens to be exactly orthogonal to one of the
facets or ribs of the polyhedron-shaped yield locus. The probability that this happens is infinitesimal,
unless a special combination of a crystal orientation and a strain vector is chosen on purpose.

Bishop and Hill (2) arrange the 56 vertices of an fcc crystal in 5 types of vertex stresses. Table 1 is
derived from their data. It shows the deviatoric stress of one of the vertices for each type. The other
vertices can be derived from these by applying the symmetry operators of the crystal.

The table actually gives the parametersSij , from which the deviatoric stresses are derived as follows
(tc is the critical resolved shear stress):

s9ij 5
Î6

2
Sijt

c (1)

In what follows, each of these stresses will be applied to the crystal in order to calculate the resolved
shear stress on all slip systems. The resolved shear stress on slip systems is given by:

ts
r 5 s9ijMij

s (2)

Mij
s is a geometrical constant which is defined as follows (1,2):

Mij
s 5

1

2
~nibj 1 njbi! (3)

in which n is the unit vector normal to the slip plane with Miller indices (h1h2h3). For fcc materials
these are {111}-planes, and we have:

ni 5
1

Î3
hi (4)

b is the unit vector in the slip direction with Miller indices [u1u2u3]. For fcc materials these are
^110&-directions, and we have:

bi 5
1

Î2
ui (5)

TABLE 1
The ParametersSij Corresponding to the Five Types of Vertices Numbered (i) to (v) by Bishop and Hill (2)

Type S11 S22 S33 S23 S31 S12

i 1 1 22 0 0 0
ii 0 0 0 3 0 0
iii 21.5 1.5 0 0 0 1.5
iv 0.5 0.5 21 1.5 1.5 0
v 0 0 0 1.5 1.5 1.5

See eq. (1) for the value of the deviatoric stresses.
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Eqs. (3–5) combined result in:

Mij
s 5

1

2Î6
~hiuj 1 hjui! 5

1

2Î6
Nij

s (6)

Note that the parametersNij
s are integer numbers which can easily be calculated by hand. They are given

by Table 2 (the superscript S is omitted in the table).
The resolved shear stressests

r can now be calculated on all slip systems for the five types of vertices.
After some elaboration, it follows from eqs. (1–6) that

ts
r 5

1

6
Qst

c (7)

with

Qs 5 SijNij
s (8)

TABLE 2
Nij 5 hiuj 1 hjui Parameters for All Slip Systems (see also Eq. (6))

s h1 h2 h3 u1 u2 u3 N11 N22 N33 N23 N31 N12

1 1 1 1 0 1 21 0 2 22 0 21 1
2 1 1 1 21 0 1 22 0 2 1 0 21
3 1 1 1 1 21 0 2 22 0 21 1 0
4 21 1 1 0 1 21 0 2 22 0 1 21
5 21 1 1 1 0 1 22 0 2 1 0 1
6 21 1 1 1 1 0 22 2 0 1 1 0
7 1 21 1 0 1 1 0 22 2 0 1 1
8 1 21 1 21 0 1 22 0 2 21 0 1
9 1 21 1 1 1 0 2 22 0 1 1 0
10 1 1 21 0 1 1 0 2 22 0 1 1
11 1 1 21 1 0 1 2 0 22 1 0 1
12 1 1 21 1 21 0 2 22 0 1 21 0

TABLE 3
Qs-Values (see Eqs. 7–8) for Each of the 5 Types of Vertices, and Each of the 12 Slip Systems

s (i) (ii) (iii) (iv) (v)

1 6 0 6 0 0
2 26 6 0 0 0
3 0 26 26 0 0
4 6 0 0 6 0
5 26 6 6 0 6
6 0 6 6 6 6
7 26 0 0 0 6
8 26 26 6 26 0
9 0 6 26 6 6
10 6 0 6 6 6
11 6 6 0 6 6
12 0 6 26 0 0

These values are proportional to the resolved shear stresses.
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Sij is given by Table 1, andNij
s can be found in Table 2. Eq. (8) then leads to Table 3 (these calculations

can also easily be made by hand).
Inspection of Table 3 leads to the following conclusions:
—The only values present are 0, 6 or26. In view of eq. (7) this means that the resolved shear

stresses on the slip systems can only take the values 0,tc or 2tc. In other words, the vertex
stresses will either induce enough shear stress to activate a slip system or no shear stress at all.
Note that this conclusion is valid for fcc materials with {111}^110& slip, but not necessarily for
other sets of slip systems.

—The vertex types (i), (ii), (iii) may activate 8 slip systems, whereas the types (iv) and (v) only
activate 6 slip systems.

The property which has been discovered here also has a geometrical meaning in stress space. Each
facet of a single crystal yield locus corresponds to a slip system. It is part of a hyperplane which is
described by the following linear equation (note: in the following equations, ordinary stress components
as well as deviatoric stress components can be used):

s ijMij
s 5 1tcor2tc (9)

The coefficientsMij
s can be seen as the components of a vector which is normal to the hyperplane.

Conversely, each slip system corresponds to two facets which are parallel to each other, one for slip in
the positive sense, and one for slip in the negative sense.

The following equation holds for a vertex stresssV which would induce a zero resolved shear stress
on this slip system (see eq. (2)):

s ij
VMij

s 5 0 (10)

Geometrically, this means that the vectorsV and the vectorMij
s are orthogonal to each other; in other

words, the vertex stress is parallel to the hyperplanes described by eq. (9), i.e. to the facets which
correspond to the slip systems.

It can be concluded from this that for fcc materials only two types of relationship are possible
between a vector representing a vertex stresssV and the two facets which correspond to a particular slip
system. These two types are:

(1) the end point of the vector representingsV is on one of the two facets; the vertex stress may activate
the slip system;

(2) the vectorsV is parallel to the facets.

This property can be seen in any yield locus section of an fcc crystal, such as Fig. 1. The vertices seen
in such a section are the projections of genuine deviatoric vertices on the section plane. The projection
direction is the direction of the hydrostatic stress.

Discussion

It should be underlined that the zero value of the resolved shear stress on the non-potentially active slip
systems is unique for fcc materials with their 12 {111}^110& slip systems (and for bcc materials with
{110} ^111& slip only).

One may view the zero values as a curiosity. Even so, it is a curiosity which came to us as a great
surprise. However, we think there are important implications for the ambiguity problem in the
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Taylor/Bishop-Hill model complex (without rate sensitivity) and for the suggestion that the ambiguity
problem may be solved once and forever by the introduction of rate sensitivity (10).

In a panel discussion at ICOTOM 8 (11) two different interpretations of the ambiguity problem were
presented: (i) that the ambiguity, as it appears in the rate-insensitive Taylor/Bishop-Hill models, reflects
a physical reality, viz. that there are a number of equally plausible solutions for the slip pattern in
polycrystals, and (ii) that the ambiguity problem is a pseudo problem associated with the unrealistic
assumption of strict rate insensitivity which is eliminated by even the slightest rate sensitivity (“rate
sensitivity at the limit of rate insensitivity”).

In our opinion the zero value of the resolved shear stresses on the non potentially active slip
systems in the rate-insensitive approach is a strong support for interpretation (i)— or rather a strong
argument against interpretation (ii). We are obviously, even with a certain rate sensitivity, very
close to a situation with zero resolved shear stress on 6 or 4 slip systems and hence with practically
no slip on these systems. Thus, the apparent solution to the ambiguity problem by a slight rate
sensitivity relies on marginal differences in the resolved shear stresses on the same 6 or 8 slip
systems which may be active in the rate-insensitive approach. These marginal differences are
determined by the detailed structure of the computer programs used rather than by real physics.
One of the “non-physical” components of these computer programs is the exact form of the relation
between resolved shear stress and slip rate for the individual slip systems. Such marginal
differences do not a priori provide a slip pattern which is “better” than that provided by an
appropriate additional rule in the Taylor/Bishop-Hill model.

Thus, in the universe of polycrystal models with many active slip systems—whether they are
rate-sensitive or rate-insensitive—we must, at least for fcc materials, accept that the overall model per
se does not provide an unambiguous selection of active slip systems. In rate-insensitive models
additional rules derived from physical ideas about the interaction of the different slip systems (e.g.
(10)), must be included. In rate-sensitive models the additional rules are hidden in the structure of the
computer program. We do not claim that rate-insensitive models are better than rate-sensitive models.
On the contrary we accept that rate-sensitive models may be more efficient. We only claim that
rate-sensitive models for fcc materials do not provide solutions which are, in the real sense of the word,
more unique than those provided by rate-insensitive models.

Figure 1. Yield locus section of an fcc single crystal. The vectorsvA andvB representing the vertex stresses A and B are parallel
to the facets which correspond to non-activated slip systems.
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Summary

It is demonstrated for fcc materials with {111}^110& slip that the resolved shear stress on the slip
systems which are not potentially active according to the rate-insensitive Taylor/Bishop-Hill model is
zero. It is argued that this implies an effective ambiguity in the selection of slip systems even with rate
sensitivity.
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